Mensuration >> Scalene Triangle

Altitude of side c of scalene triangle with side a and angle B - Scalene Triangle - Mensuration problem solver

Find the altitude of side c of a scalene triangle with side a of 12 units and angle B of 62.72 degrees.


side a = 12
angle B = 62.72
hc =  a * sin(deg2rad( B ))
altitude of side c = 12 * sin(deg2rad( 62.72 ))
altitude of side c = 10.6653
So the altitude of side c is 10.6653

Scalene triangle Formulas :

P =  a + b + c

s =  P / 2

K =  ( base * height ) / 2

base =  ( 2 * K ) / height

height =  ( 2 * K ) / base

ta =  ( 2 * b * c ) * ( cos(deg2rad( A / 2 )) / ( b + c ) )

tb =  ( 2 * a * c ) * ( cos(deg2rad( B / 2 )) / ( a + c ) )

tc =  ( 2 * a * b ) * ( cos(deg2rad( C / 2 )) / ( a + b ) )

ma =  (sqrt( ( 2 * b * b ) + ( 2 * c * c ) - ( a * a ) )) / 2

mb =  (sqrt( ( 2 * a * a ) + ( 2 * c * c ) - ( b * b ) )) / 2

mc =  (sqrt( ( 2 * a * a ) + ( 2 * b * b ) - ( c * c ) )) / 2

ha =  c * sin(deg2rad( B ))

hb =  a * sin(deg2rad( C ))

hc =  a * sin(deg2rad( B ))

a =  P - b - c

b =  P - a - c

c =  P - a - b


where,

a = side a
b = side b
c = side c
P = perimeter
K = area
height = height
m = median
t = angle bisector
R = circumscribed circle radius
r = inscribed circle radius
s = semi perimeter
ta = angle bisector of side a
tb = angle bisector of side b
tc = angle bisector of side c
ma = median of side a
mb = median of side b
mc = median of side c
ha = altitude of side a
hb = altitude of side b
hc = altitude of side c
A = angle A
B = angle B
C = angle C
base = base

Not the question you are looking for ?

Ask Your Question Here